科学首页 > 科学动态 > 新闻列表 > 正文

人类突破绝对零度 超低温量子气体可模拟暗能量

http://www.kexue.com 2013-08-26 09:14:34 科学网  发表评论


量子气体的温度突破了“绝对零度”,有望模拟暗能量

  德国物理学家用钾原子首次造出一种低于绝对零度的量子气体。科学家称这一成果为“实验的绝技”,为将来造出负温度物质、新型量子设备打开了大门,有助于揭开宇宙中的许多奥密。

  绝对零度是根据理想气体所遵循的规律,用外推的方法得到的。用这样的方法,当温度降低到-273.15℃时,气体的体积将减小到零。如果从分子运动论的观点出发,理想气体分子的平均平动动能由温度T确定,那么也可以把绝对零度说成是“理想气体分子停止运动时的温度”。以上两种说法都只是一种理想的推理。事实上一切实际气体在温度接近-273.15℃时,将表现出明显的量子特性,这时气体早已变成液态或固态。总之,气体分子的运动已不再遵循经典物理的热力学统计规律。通过大量实验以及经过量子力学修正后的理论导出,在接近绝对零度的地方,分子的动能趋于一个固定值,这个极值被叫做零点能量。这说明绝对零度时,分子的能量并不为零,而是具有一个很小的数值。原因是,全部粒子都处于能量可能有的最低的状态,也就是全部粒子都处于基态。

  18世纪中期,开尔文男爵威廉·汤姆森定义了绝对温度,在此规定下没有物质的温度能低于绝对零度。气体的绝对温度与它所包含粒子的平均能量有关,温度越高,平均能量越高,而绝对零度是气体的所有粒子能量都为零的状态,这是一种理想的理论状态。到了上世纪50年代,物理学家在研究中遇到了更多反常的物质系统,发现这一理论并不完全正确。

  慕尼黑路德维格·马克西米利安大学物理学家乌尔里奇·施奈德解释说,从技术上讲,人们能从一条温度曲线上读出一系列温度数,但这些数字表示的只是它所含的粒子处于某个能量状态的概率。通常,大部分粒子的能态处于平均或接近平均水平,只有少数粒子在更高能态上下。理论上,如果这种位置倒转,使多数粒子处于高能态而少数粒子在低能态,温度曲线也会反过来,温度将从正到负,低于绝对零度。2001年诺贝尔物理学奖获得者沃尔夫冈·克特勒也曾证明,在磁场系统中存在负绝对温度。

  施奈德和同事用钾原子超冷量子气体实现了这种负绝对零度。他们用激光和磁场将单个原子保持晶格排列。在正温度下,原子之间的斥力使晶格结构保持稳定。然后他们迅速改变磁场,使原子变成相互吸引而不是排斥。施奈德说:“这种突然的转换,使原子还来不及反应,就从它们最稳定的状态,也就是最低能态突然跳到可能达到的最高能态。就像你正在过山谷,突然发现已在山峰。”

  在正温度下,这种逆转是不稳定的,原子会向内坍塌。他们也同时调整势阱激光场,增强能量将原子稳定在原位。这样一来,气体就实现了从高于绝对零度到低于绝对零度的转变,约在负十亿分之几开氏度。

  克特勒现任美国麻省理工大学物理教授,他称此最新成果为一项“实验的绝技”。在实验室里,反常高能态在正温度下是很难产生的,而在负绝对温度下却会变得稳定——“就像你能把一个金字塔倒过来稳稳的放着,而不必担心它会倒。”克特勒指出,该技术使人们能详细研究这些反常高能态,“也可能成为创造新物质形式的一条途径。”

  德国科隆大学理论物理学家阿希姆·罗施说,如果真能造出这些物质系统,它们会表现出奇特的行为。根据和他的同事计算,正常情况下原子云受重力影响会被向下拉,如果一部分云处于负绝对温度,某些原子就会向上运动,明显违背重力作用。

  负绝对温度气体还能模拟“暗能量”。暗能量是推动宇宙加速膨胀、抵抗万有引力内向拉力的力量。施奈德指出,在他们生成的气体中,相互吸引的原子也有向内坍塌趋势,但负绝对温度却能遏制它们向内运动而保持稳定。这种宇宙中普遍存在的奇特现象如今也能在实验室看到,值得宇宙学家进一步研究。

  相关阅读
  科学家制造原子气体 首次实现低于绝对零度状态
  借助量子物理学 科学家首次观测到绝对零度状态
  宇宙最冷之地布莫让星云 仅仅比绝对零度高1度
  美破被认无法超越低温 制绝对零度十亿分之一度
  揭开神秘暗能量 爱因斯坦因它犯"一生最大错误"

网友评论以下评论只代表网友个人观点,不代表科学网观点 已有条评论